Discovery of Proton - Full Story from Start to End

proton is a subatomic particle, with a positive electric charge of +1e elementary charge and a mass slightly less than that of a neutronOne or more protons are present in the nucleus of every atom; they are a necessary part of the nucleus. The number of protons in the nucleus is the defining property of an element and is referred to as the atomic number. Since each element has a unique number of protons, each element has its own unique atomic number.

In this article, I had tried to explain the story of the Discovery of Proton from starting to end and in an interesting way. 

You should also watch this video to know this story in Hindi.



Discovery of Proton

The concept of a hydrogen-like particle as a constituent of other atoms was developed over a long period. As early as 1815, William Prout proposed that all atoms are composed of hydrogen atoms (which he called "protyles"), based on a simplistic interpretation of early values of atomic weights, which was disproved when more accurate values were measured.

In 1886, Eugen Goldstein discovered canal rays (also known as anode rays) and showed that they were positively charged particles (ions) produced from gases.
Goldstein used a gas-discharge the tube which had a perforated cathode. When an electrical potential of several thousand volts is applied between the cathode and anode, faint luminous "rays" are seen extending from the holes in the back of the cathode. These rays are beams of particles moving in a direction opposite to the "cathode rays", which are streams of electrons which move toward the anode. Goldstein called these positive rays Kanalstrahlen, "channel rays" or "canal rays" because they were produced by the holes or channels in the cathode. In 1907 a study of how this "ray" was deflected in a magnetic field, revealed that the particles making up the ray were not all the same mass. The lightest ones, formed when there was some hydrogen gas in the tube, were calculated to be about 1840 times as massive as an electron. They were protons.

The process by which anode rays are formed in a gas-discharge anode ray tube is as follows. When the high voltage is applied to the tube, its electric field accelerates the small number of ions (electrically charged atoms) always present in the gas, created by natural processes such as radioactivity. These collide with atoms of the gas, knocking electrons off of them and creating more positive ions. These ions and electrons in turn strike more atoms, creating more positive ions in a chain reaction. The positive ions are all attracted to the negative cathode, and some pass through the holes in the cathode. These are the anode rays.

By the the time they reach the cathode, the ions have been accelerated to a sufficient speed such that when they collide with other atoms or molecules in the gas they excite the species to a higher energy level. In returning to their former energy levels these atoms or molecules release the energy that they had gained. That energy gets emitted as light. This light-producing process, called fluorescence, causes a glow in the region where the ions emerge from the cathode.

However, since particles from different gases had different values of charge-to-mass ratio (e/m), they could not be identified with a single particle, unlike the negative electrons discovered by J. J. ThomsonWilhelm Wien in 1898 identified the hydrogen ion as a particle with the highest charge-to-mass ratio in ionized gases.

In 1917 (in experiments reported in 1919 and 1925), Rutherford proved that the hydrogen nucleus is present in other nuclei, a result usually described as the discovery of protons. These experiments began after Rutherford had noticed that, when alpha particles were shot into air (mostly nitrogen), his scintillation detectors showed the signatures of typical hydrogen nuclei as a product. After experimentation, Rutherford traced the reaction to the nitrogen in the air and found that when alpha particles were introduced into pure nitrogen gas, the effect was larger. In 1919 Rutherford assumed that the alpha particle knocked a proton out of nitrogen, turning it into carbon. After observing Blackett's cloud chamber images in 1925, Rutherford realized that the opposite was the case: after the capture of the alpha particle, a proton is ejected, so that heavy oxygen, not carbon, is the end result i.e. Z is not decremented but incremented. This was the first reported nuclear reaction, 

14N + α → 17O + p.

 Depending on one's perspective, either 1919 or 1925 may be regarded as the moment when the proton was 'discovered'.

Rutherford knew hydrogen to be the simplest and lightest element and was influenced by Prout's hypothesis that hydrogen was the building block of all elements. Discovery that the hydrogen nucleus is present in all other nuclei as an elementary particle led Rutherford to give the hydrogen nucleus a special name as a particle since he suspected that hydrogen, the lightest element, contained only one of these particles. He named this new fundamental building block of the nucleus the proton, after the neuter singular of the Greek word for "first", πρῶτον. However, Rutherford also had in mind the word protyle as used by Prout. Rutherford spoke at the British Association for the Advancement of Science at its Cardiff meeting beginning 24 August 1920. Rutherford was asked by Oliver Lodge for a new name for the positive hydrogen nucleus to avoid confusion with the neutral hydrogen atom. He initially suggested both proton and prouton (after Prout). Rutherford later reported that the meeting had accepted his suggestion that the hydrogen nucleus is named the "proton", following Prout's word "protyle".


Post a Comment

0 Comments